An Interpretable Deep Architecture for Similarity Learning Built Upon Hierarchical Concepts

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical Functional Concepts for Knowledge Transfer among Reinforcement Learning Agents

This article introduces the notions of functional space and concept as a way of knowledge representation and abstraction for Reinforcement Learning agents. These definitions are used as a tool of knowledge transfer among agents. The agents are assumed to be heterogeneous; they have different state spaces but share a same dynamic, reward and action space. In other words, the agents are assumed t...

متن کامل

An Architecture for Deep, Hierarchical Generative Models

We present an architecture which lets us train deep, directed generative models with many layers of latent variables. We include deterministic paths between all latent variables and the generated output, and provide a richer set of connections between computations for inference and generation, which enables more effective communication of information throughout the model during training. To imp...

متن کامل

InterpNET: Neural Introspection for Interpretable Deep Learning

Humans are able to explain their reasoning. On the contrary, deep neural networks are not. This paper attempts to bridge this gap by introducing a new way to design interpretable neural networks for classification, inspired by physiological evidence of the human visual system’s inner-workings. This paper proposes a neural network design paradigm, termed InterpNET, which can be combined with any...

متن کامل

hierarchical functional concepts for knowledge transfer among reinforcement learning agents

this article introduces the notions of functional space and concept as a way of knowledge representation and abstraction for reinforcement learning agents. these definitions are used as a tool of knowledge transfer among agents. the agents are assumed to be heterogeneous; they have different state spaces but share a same dynamic, reward and action space. in other words, the agents are assumed t...

متن کامل

Hierarchical Deep Learning Architecture For 10K Objects Classification

Evolution of visual object recognition architectures based on Convolutional Neural Networks & Convolutional Deep Belief Networks paradigms has revolutionized artificial Vision Science. These architectures extract & learn the real world hierarchical visual features utilizing supervised & unsupervised learning approaches respectively. Both the approaches yet cannot scale up realistically to provi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Image Processing

سال: 2020

ISSN: 1057-7149,1941-0042

DOI: 10.1109/tip.2020.2965275